Used as a general purpose scripting language.

Perl 1s high-level, interpreted, and dynamically typed. This line loads the Perl
interpreter, which first compiles the script into a syntax tree, and then walks
the tree to execute the program. Perl was first developed by Larry Wall in 1987
to make data processing easier, but today it 1s most commonly used for web
scripting. It’s greatest strengths are its powerful text manipulation capabilities
and 1t’s extensive set of modules available through GPAN.

Catch exceptions using eval.

Exceptions that occur within an eval block set the special $@ variable, which
can then be tested at the end of the block to catch the exception. EXPR | |
die(“error”) i1s a commonly used Perl statement that takes advantage of
Perl’s short-circuit Boolean evaluation to execute an expression and 1if it re-
turns false throw an exception.

Regular expressions are built in.

'T'he =~ operator 1s used for regular expression matching, substitution, or trans-
literation. Regular expressions are commonly delimited by forward slashes.
This regular expression matches a 10-digit phone number of various formats.

Create your own modules and classes.

Perl uses the same package system for creating both modules and classes. A
module 1s simply a file containing one package, while a class 1s simply a pack-
age. The subroutines in a package define a class’s methods, and one class
can 1inherit from another using the use parent directive. SillySort.pmis a
module that exports two sort routines, assumption sort and bogosort, which
can be used to sort arrays of scalars.

Write your own subroutines.

Subroutines can be called with any number of arguments, which are passed
in through the @_ special variable that contains an array of the arguments.
A common way to access the arguments 1s using shift(@_) to pop off argu-
ments from the front of the array one at a time, as seen here.

Use sigils to indicate variable type.

Sigils make it easy to tell what 1s a variable and what type of data that vari-
able contains just by looking at its name. They also give context to assignment
statements, making the right-hand expression be evaluated in either scalar or
list context, depending on the sigil used on the left-hand side. The commonly
used sigils are as follows:

* $ - an individual number or string value.

* @ - an array of values, indexed starting at 0.

* % - a hash table storing values keyed by strings.

* & - a callable subroutine.

findphones.pl

#1/usr/bin/perl

use strict;

eval {
open(HANDLE, "< directory.txt") || die "Failed to open file: $!";
-
if (@) { # $@ contains any errors that occurred in the eval block
die;
t

while (my $line = <HANDLE>) {
if ($line =~ m/(\N(\d{3}\) |\d{3})-{0, 11\d{3}-{0, 1}\d{4}/) {
sline matches (XXX)=XXX=XXXX O XXX=XXX=XXXX 0Or XXX=XXXXXXX
F O 200000 XAX
print STDOUT "Found match: $line"; # string interpolation

SillySorts.pm

package SillySorts 1.01;

use v5.10;

use parent gw(Exporter);

our @EXPORT = qw(assumption_sort bogosort); # Symbols exported by default
sub assumption_sort {

algorithm: assume the array passed 1in 1s already sorted, return it.
return @_;

sub bogosort {
algorithm: while array isn't sorted, shuffle it's elements
my $arr = shift(@_); # %$arr is set to argument 1, an array reference

while (not is_sorted(@$arr)) { # the @ sigil dereferences $arr
shufflel($arr):
¥

sub is_sorted {
foreach my $i (1 .. $#_) { # $#_ is the length of the @_ array

if (@_[%$i-1] > @_[%$i]) {

return @;
}
¥
return 1;
s
sub shuffle {
algorithm: Fisher-Yates shuffle
my $arr = shift(@_);
for (my %$i = @%arr-1; $i >= 0; —-%$i) {
my $j = int rand($i+1);
@$arr($i,$j] = @%arrl[$j,$il; # swaps @$arr[i] with @$arr(jl
}
}
1;

N i

testSillySorts.pl

use v5.10;

use SillySorts;

pur ‘@arr = (1, 2, 3, 4, 5);

my @rr2 = assumption_sort(@arr);

say "Assumption sorted (" . join("“, ", @arr) . ") = ("

joaint™, %, marr2) . “1%;

@arr2 = assumption_sort(3, 2, 1, 4, 5);
say “Assumption sorted (3, 2, 1; 4, 5] = t" . join{", ", @arr2) .. "J%;

@rr = @arr2;
bogosort(\@arr2);
say "Bogosorted (" . join{", ™, @arr) . "} = (" . join{", ", @arr2) . "“)";

The Anatomy of a Perl Program

by Chip Jackson

Easily parse and manipulate text files.

With built in regular expressions and a rich set of parsing abilities, Perl 13 commonly
used to read, process and manipulate textual data. Here, the file “directory.txt” 1s being
opened in read (“<”) mode, and it’s file handle 1s being stored in the HANDLE variable.

Access various runtime values using special variables.

These values include function parameters, environment variables, errors, regular ex-

pression and file information, and various other general-purpose variables. Some com-

monly used ones:

* $_ - the “default” variable. Set to contain loop items, regular expression matches, lines
of an open file, function parameters and more.

* @_ - the array of arguments the currently executing function was called with.

* $! —the most recent system error.

* $@ - errors that occurred during the most recently executed eval block.

In this statement, the special $! variable, which contains any error message that may

have been generated while opening the file, 1s being inserted into the string.

Choose your own scoping rules.

The my keyword declares the $arr variable with local scope, so it 1s only accessible from
inside this subroutine. Perl uses the following keywords to declare a variables scope:

* my — lexical local scope

» our —lexical global scope

* state — static lexical scope

* local — dynamic scope

Looop through arrays using foreach.

Or you can use G-style for loops, after all Perl’s slogan 1s ““T'here’s more than one way to
do it,” (TIMTOW'TDI, pronounced “Tim Toady”). Here, $i is being set to successive
integers 1n the range from 1 to the size of the @_ array with each 1iteration of the loop.
Perl uses the following control flow structures:

e if (EXPR) { BLOCK } elsif (EXPR) { BLOCK } else { BLOCK }
e unless (EXPR) { BLOCK }

e given (EXPR) { when (EXPR) { BLOCK } default { BLOCK } }
« while (EXPR) { BLOCK }

e for (INITIALIZER; CONDITION; MODIFIER) { BLOCK }

« foreach ELEMENT (ARRAY) { BLOCK }

Choose your own parameter passing method.

Subroutine parameters are pass-by-reference, but to get pass-by-value you can simply
copy the arguments into locally scoped my variables. When an array is passed as a pa-
rameter, its elements are split into separate arguments to the subroutine. In order to be
able to modity the array as a whole, you must pass a reference to the array, which can
be achieved using the \ operator, as shown here.

References
Christiansen, Tom, Brian D. Foy, and Larry Wall. Programming Perl. 4th ed. O’Reilly, 2012.

“Perl Documentation.” perldoc.perl.org.
“Perl.” Wikipedia. Wikimedia Foundation, 03 Oct. 2014.
“PerlMonks.” PerlMonks.org. The Perl Foundation.

