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Background

Google introduced in 1998 by

Stanford graduate students (\_')'0() g]— e

Sergey Brin and Larry Page.

Goal was to eliminate “junk” results by looking at the hyperlink
structure of the internet.

Developed PageRank algorithm that calculated the importance of
a webpage based on the number of links pointing to it.

PageRank still in use today.



The Web as a Graph

A Simple Model

The internet is comprised of web pages and these pages link to one
another. A simple model for the web is to represent the web by a
directed graph.



The Web as a Graph

A Simple Model
The internet is comprised of web pages and these pages link to one
another. A simple model for the web is to represent the web by a

directed graph.

Ex: A web with four pages.



The Web as a Graph

Terminology

Links to page A are called backlinks for A.

A page with no outgoing links is called a dangling node.

A graph is called connected if you may begin at any vertex
and reach any other vertex by traversing edges.

A graph is called strongly-connected if you may begin at any
vertex and reach any other vertex by traversing edges only
along the direction they point.

E.g. A graph with a dangling node is not strongly-connected.
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Our previous example:
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The Web as a Graph

Our previous example:

@ Each vertex has at least one outgoing link, so the graph has
no dangling nodes.

@ The graph is connected.
@ The graph is not strongly-connected.



PageRank Concept

Basic idea: PageRank(x) = number of pages that link to x

Problem: Pages that link to tons of other pages have too much
influence.

Fix: Divide a page's vote evenly among all the pages it links to.

Problem: Some pages should have a larger vote than others (i.e.
yahoo.com vs. wwu.com)

Fix: Weight a page's voting power by its own PageRank.



PageRank Calculation

L, = the set of pages that link to page k
ni = the number of pages that are linked to by page k

The PageRank of page k is

X;
X — E >l
n;

jeL,



PageRank Algorithm

Build matrix A, where

0 0 1 1/2
A_ |13 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0




PageRank Algorithm

PageRanks will be the solutions to the equation Ax = x, or the
eigenvectors with a corresponding eigenvalue of 1.

X: 12 a
x| |4
X3 o 9 e 0
- 3
A square matrix is column-stochastic if all entries are nonnegative
and the entries in each column sum to one.

N =

ES

Proposition 1

Every column-stochastic matrix has 1 as an eigenvalue.




PageRank Algorithm

Complications...

Can't handle dangling nodes (no outgoing links)...

0 0 0 1/2
A_ |13 0 0 0
“ {13 12 0 172
1/3 1/2 0 0

A =0.56,0,—-0.28 + 0.26/




PageRank Algorithm
Complications...

Or disconnected graphs...

\@ 1/2 0 0 0 ©
@\/ A=[1/2 0 0 0 0
0 00 01
0 0010



PageRank Algorithm

Complications...

Or graphs that aren't strongly connected...

A_ |12 000
“ |12 0 01
0 010

m x =[0,0,1,1]



Modified PageRank

To resolve one of these issues we wish to make a modification of
the original matrix which preserves the structure of the web while
eliminating the issue of disconnected graphs. We replace the link
matrix A with

M= (1—-m)A+mS

where S is the n x n matrix with all entries % and 0 < m< 1. This
augmentation of A is a weighted average of A and S. For any

m € [0,1], M is column-stochastic. If m =0 we get M = A;
m=1, M =S. Both of these cases are uninteresting. We expect
a reasonable m to be small to preserve A. Initially, Google
PageRank used m = 0.15.



Let V1(M) denote the vector space of eigenvectors of M with
eigenvalue 1.

Proposition 2

For any positive column-stochastic matrix M if v € V4(M), then
the components of v are all of one sign.




Proof.

Suppose there exists an eigenvector, x, with positive and negative
components.

Since Mx = x, we have x; = 27:1 Mijx; where the summands are
of mixed sign.

By the triangle inequality,

n n
il = | 3 M| < 3 Myl
j=1 j=1
We have:

Z\x,\ <303 Myl —Z(ijy)\xj\ :irx,-r

i=1 j=1 j=1 i=1

Contradiction.



Other Results

Proposition 3
Let v,w € R™ be linearly independent. Then 3s,t € R not both
zero with x = sv + tw having both positive and negative

components.




Other Results

Proposition 3

Let v,w € R™ be linearly independent. Then 3s,t € R not both
zero with x = sv + tw having both positive and negative
components.

| A\

Proposition 4

If M is positive and column-stochastic then V4(M) has dimension
1.

A\




HITS Method

HITS is an alternative to PageRank- a main difference being that
it bases its results on a query, rather than calculating importance
scores beforehand.

The main idea behind HITS is that that we can consider webpages
to serve as both ‘authorities’ and ‘hubs’, where good authorities
are pointed to from good hubs and good hubs point to good
authorities. We calculate hub and authority scores iteratively by
taking advantage of this relationship. For page i, given an initial
authority score 2 and an initial hub score hfo), then

a,(k) = Z hj(.k_l) for ej; € E and h,(k) = Z aj(-k) for ej € E
j J

give the updated authority and hub scores, where E is the set of all
directed edges in the graph.



HITS Method

Letting L be the adjacency matrix, where L; = 1 if e € E and 0 if
not, then we can rewrite the previous sums as

F0) — [TH k-1 and F6) — [ F0)

where 7 (K is the vector containﬁg the authority scores for each
vertex on the kth iteration, and h (%) defined similarly.



HITS Method

Letting L be the adjacency matrix, where L; = 1 if e € E and 0 if
not, then we can rewrite the previous sums as

F0) — [TH k-1 and F6) — [ F0)

where 7 (K is the vector containﬂg the authority scores for each
vertex on the kth iteration, and h (%) defined similarly.
Rearrangement gives

TR = [T 3K=1) and B = [T k1)

This is essentially a step in the power method of computing
dominant eigenvectors.



HITS Algorithm

@ Given a query, create a neighborhood graph N, consisting of
webpages which contain terms in the query, or link to/from
pages that contain the terms in the query

@ Create adjacency matrix L from this graph
— —
o From equations 3K = LTLZ*=1) and A (K) = (LT p (k1)
calculate dominating eigenvector by considering

liM oo m where A= LTL or A= LLT respectively,

glven an initial vector xp. These should converge on 4 7 and
h (k)

@ Order the elements in the resulting vectors and return pages
with largest hub and authority scores in two separate lists.



An Example

Consider the following "Web' consisting of 9 webpages:
@ A History of Google
@ Representing Webpages with a Linear-Algebra Based Model
© The Anatomy of a Large-Scale Hypertextual Web Search
Engine
@ Efficient Crawling though URL Ordering
© Queries and Computation on the Web
@ Mining Structural Information on the Web
@ Matrix Computations
© Modeling Population Growth
© Effect of Environmental Factors on Large Populations

Also consider the query 'using linear algebra to understand the
Web'.
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The graph of the web and the link matrix A is calculated:
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Results for PageRank

We calculate the matrix M = 0.85 %« A+ 0.15 % S, where S is the
matrix of entries all é. Then use the power method to determine
the dominating eigenvector with eigenvalue 1 (with initial vector xp
where each page has equal rank %):
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Results for PageRank

We calculate the matrix M = 0.85 %« A+ 0.15 % S, where S is the
matrix of entries all é. Then use the power method to determine
the dominating eigenvector with eigenvalue 1 (with initial vector xp
where each page has equal rank %):

x = [0.173,0.017,0.068, 0.180, 0.192, 0.068, 0.081, 0.111, 0.111]

Thus pages 4 and 5 have high importance scores.



Using HITS

We select all pages except 8 and 9, and create the following
neighborhood graph N and corresponding adjacency matrix L:
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Results of HITS

Calculate H= L% LT and A= L" % L and use power method to
calculate dominant eigenvectors (with initial vector xp with all
entries equal to 1):
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Results of HITS
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calculate dominant eigenvectors (with initial vector xp with all
entries equal to 1):
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Results of HITS

Calculate H= L% LT and A= L" % L and use power method to
calculate dominant eigenvectors (with initial vector xp with all
entries equal to 1):

a = [0.477,0.000,0.131, 0.000, 0.000, 0.131, 0.262]
h = [0.000, 0.274, 0.274, 0.274,0.000, 0.000, 0.177]

Pages 1 and 7 are good authorities and pages 2, 3, and 4 are good
hubs for this query.
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